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ABSTRACT 
 
In this study an alternate formulation (optimum membrane triangle (OPT) element that is to reduce the 
computer programming and the computational cost is presented. The accuracy of finite element program has 
been established by analyzing some standard benchmarks example. The numerical study indicate that using 
OPT element for a wide range of aspect ratio, shows the performance with good accuracy in finite element 
idealization with coarse mesh for analysis of a shear wall structure. 
 
KEYWORDS: finite elements, high performance element, drilling freedoms, shear wall structure, assumed 
natural deviatoric strains. 
 
INTRODUCTION 
 
Since the evolution of the finite element, there have been significant developments in finite element methods. A 
large number of different finite elements have been developed and the finite element methods have been used 
for solving problems in different fields of engineering. The finite element methods became even more popular 
with the advancement of microcomputers and development of various efficient programming languages.  
 
The refinement of the membrane element has gone about as far as it can go within the limitation of two degrees 
of freedom per node. Ever since 1967 element designers have considered the possibility of using the component 
of rotation normal to the plane of the element at its corner points as an additional nodal degree of freedom with 
which to improve the performance of three- and four-node membrane elements [1]. 
 
In-plane rotational degrees of freedom are referred to as "drilling degrees of freedom", as shown in Fig. 1. 
Drilling degrees of freedom are viewed as particularly displacement in plate and shell analysis.  

 
Figure 1:  Membrane element with drilling degree of freedom 

 
The idea of including normal-rotation degrees of freedom at corner points of plane-stress finite elements (the so-
called drilling freedoms) is an old one [2-5]. The main objectives behind this idea are: 
 
(a) To improve the element performance while avoiding the use of midpoint degrees of freedom. Midpoint 

nodes have lower valency than corner nodes, demand extra effort in mesh definition and generation, and can 
cause modeling difficulties in nonlinear analysis and dynamics. 

(b) To solve the "normal rotation problem" of smooth shells analyzed with finite elements programs that carry 
six degrees of freedom per node. 

(c) To simplify the modeling of connections between plates, shells and beams. 
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Sze, et al. [6] developed a mixed quadrilateral plane element with drilling degrees of freedom using Allman’s 
interpolation scheme.  Piancastelli [7] introduced a plate-type finite element with six degrees of freedom (DOF) 
for each node. Hughes et al. [5] investigated variational principles employing independent rotation fields. In the 
two-dimensional case these lead to membrane elements with "drilling degrees of freedom". Cook [8] developed 
a 24 degree of freedom quadrilateral shell element with drilling degree of freedom. He concluded that numerical 
results are good but the element is not the best available four-node shell element in all test cases. 
 
Chinosi [9, 10] considered the membrane elements with drilling degrees of freedom and implemented a new 
finite element scheme with drilling degrees of freedom for linear elasticity problems and to show its 
convergence properties. Zhu, et al. [11] discussed the development of a new four-node general element with 
single point quadrature used for the analysis of non-linear geometrical and material problems. One of the main 
features of that element is the implementation of a rotation component.  Lee, et al. [12] studied the analysis of 
folded structures and box beams by using drilling degree of freedom. The results obtained are in good 
agreement with the semi analytical solutions and numerical results reported by other investigators. Pimpinelli 
[13] studied a four nodes quadrilateral membrane with drilling degrees of freedom. The proposed numerical 
model is based on the minimization of the modified Hu–Washizu functional where the enhanced strain and the 
enhanced rotation fields are included. The stability and the convergence of the numerical method are discussed 
and the numerical examples show that the proposed finite element exhibits good behavior for distorted coarse 
mesh under bending stress states.  
 
Ibrahimbegovic [14] presented a membrane element with drilling degrees of freedom based on a variational 
formulation which employs an independent rotation field. New membrane elements namely MQ2 and MQ3 are 
by Ibrahimbegovic [15] presented with rotational degrees of freedom. Both membrane elements are based on a 
variational foundation and both exhibit good performance over a set of problems. Furthermore, the 
Ibrahimbegovic [16,17,18] constructed a two-dimensional membrane element with drilling rotations for 
geometrically nonlinear elasticity with applying the mixed finite element method. In very extensive 
investigation   presented a consistent theoretical framework for a stress resultant geometrically nonlinear shell 
theory and discussed details of the numerical implementation of the geometrically nonlinear shell theory with 
drilling degree of freedom.  
 
 Felippa et al. [19,20] studied the formulation of 3-node, 9-dof membrane elements with normal-to-element-
plane rotations (the so-called drilling freedoms) within the context of parameterized variational principles. They 
constructed an element of this type using the extended free formulation EFF and they constructed this element 
within the context of the assumed natural deviatoric strain (ANDES) formulation. The resulting formulation has 
five free parameters. These parameters are optimized against pure bending by energy balance methods. The 
performance of the resulting element is evaluated. Furthermore, Felippa [21] in an extensive report compare 
derivation methods for constructing optimal membrane triangles with corner drilling freedoms. The term 
“optimal” is used in the sense of exact inplane pure-bending response of rectangular mesh units of arbitrary 
aspect ratio. In this paper a comparative summary of element formulation approaches, the construction of an 
optimal 3-node triangle (OPT) using the ANDES formulation is presented.   
The present investigation has been focused on following: 
 

(i) Formulation of triangle optimal element in a simple form, which makes the OPT element attractive 
as far as its programming and computational cost are concerned. The formulation is mainly based 
on the work of Felippa et al [19-21]. 

(ii) Development and validation of a computer program based on (i).  
(iii) Applying the developed computer code in analysis of shear wall structures. 

 
FORMULATION OF OPTIMAL MEMBRANE ELEMENTS 
 
The Assumed Natural Deviatoric Strain (ANDES) formulation is a combination of the free formulation (FF) of 
Bergan and a variant of the Assumed Natural Strain (ANS) method according to Park et al. [22]. Extensive 
formulation of ANS and ANDS published in work of Felippa et al. [19-21].  The basic steps of formulation are 
summarized in below. The narrative assumes that the element to be constructed has nodal displacement degrees 
of freedom collected in vector v, elastic modulus matrix E, and volume V. ANDES is a variant of ANS that 
exploits the fundamental decomposition of the stiffness equations: 
 

                         pvKKvK hb =+= )( α         (1) 
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Here Kb is the basic stiffness, which takes care of consistency, and Kh is the higher order stiffness, which takes 
care of stability (rank sufficiency) and accuracy. This decomposition was found by Bergan [23] as part of the 
Free Formulation (FF) and α > 0 is a scaling coefficient. The basic stiffness matrix Kb is constructed by the 
standard procedure (CST element). The mean portion of the strains is left to be determined variationally from 
the constant stress assumptions used to develop Kh.. 
 
Element Description  
The membrane triangle shown in Fig. 2 has straight sides joining the corners defined by the coordinates {xi , yi }, 
i = 1, 2, 3. Coordinate differences are abbreviated xij = xi − xj and yij = yi − yj . The signed area A is given by   
2A = (x2 y3 − x3 y2) + (x3 y1 − x1 y3) + (x1 y2 − x2 y1) = y21x13 − x21 y13  
In addition the l ij’s are the lengths of the sides.  The triangle will be assumed to have constant thickness h and 
uniform plane stress constitutive properties.  

   2
ιj

2
ιjjιιj yxll +==                                                            (2) 

 
Figure 2:  Triangle geometry 

 
The well known triangle coordinates are denoted by ζ1, ζ2 and ζ3, which satisfy ζ1 + ζ2 + ζ3 = 1. The degrees 
of freedom, are collected in the node displacement vector; 
 

  T
yxyxyxR ]uuuuuu[u 333222111 θθθ=                                        (3) 

 
Here uxi and uyi denote the nodal values of the translational displacements ux and uy along x and y, respectively, 
and θ ≡ θz are the “drilling rotations” about z (positive counter clockwise when looking down on the element 
midplane along -z).  
 
Natural Strains  
In the derivation of the higher order stiffness by ANDES [19] natural strains play a key role. Strains along the 3 
side directions were used in [19]. The natural strains are collected in the 3-vector as showed in fig. 3: [21] 
 

    [ ] T
133221 εεεε =                                   (4) 
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Figure 3:  Natural strains, along side directions 

 
The natural strains are related to Cartesian strains {exx, eyy, 2exy} by the “strain gage rosette” transformation.  
Strain gage rosette are given by; 

      (5) 
 
The inverse relationship in matrix notation is e = Te ε . The natural stress-strain matrix Enat is defined by  

                                                             E nat = T
e

T 
E Te                    (6) 

 
which is constant over the triangle [21]. 
 
The Basic Stiffness  
 
An explicit form of the basic stiffness for the LST was obtained in 1984 and published the following year. It can 

be expressed as   Kb = V 
−1

L E L
T
. Where V = Ah is the element volume, and L is a 3 × 9 matrix that contains a 

free parameter αb: [19-21,23]; 
 

 
     (7) 

In the FF this is called a force-lumping matrix, If αb = 0 the basic stiffness reduces to the total stiffness matrix 
of the CST element, in which case the rows and columns associated with the drilling rotations vanish. In the 
direct fabrication approach the decomposition is explicitly used in the two-stage construction of the element: 
first Kb and then Kh.  

 
The Higher Order Stiffness  
The ANDES form of higher order stiffness matrix Kh developed in [19], is  

            (8) 
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Where Kθ is the 3 × 3 higher order stiffness in terms of the hierarchical rotations
~
θ  and  cfac is a scaling factor 

[21]. To express Kθ compactly, introduce the following matrices, which depend on nine free dimensionless 
parameters, β1 through β9:  

 
               (9) 

Matrix Qi relates the natural strains i at corner i to the deviatoric corner curvatures
~
θ . Evaluate at the midpoints:  

    (10) 

 
 

 
where β0 is an overall scaling coefficient. So finally KR assumes a template form with 11 free parameters: 
αb,β0,β1,...β9: [21] 

      (11) 
 

The free dimensionless parameters are determined from a higher order patch test which tunes up the higher 
order stiffness of triangular elements. Using such a patch test the optimal parameters are calculated and 
tabulated in Table 1 [21]: 
 

Table 1: Dimensionless parameter of OPT element 
 

αb  β0  β1  β2  β3  β4  β5  β6  β7  β8  β9  
3/2  1/2  1  2  1  0  1  −1  −1  −1  −2  

 
 
FAST CALCULATION OF HIGHER ORDER STIFFNESS MATRIX 
 
In this study an alternative formulation of the above element is presented which is more efficient compare to the 
optimal element constructed by Felippa [21]. The programming aspect and implementation the element is a 
simple task. In the subsequent discussion these formulation are brought in details. Let assume LL matrix as: 

    

⎥
⎥
⎥

⎦

⎤

⎢
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⎢
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=
2
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2
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With assuming this matrix we can rewrite the formulation of Qi and Te as: 

     LLTTQLLQ *
ee

*
ii == −1   and     *

e
*

e
*
nat TETE

T

=  

    (13) 



International Journal of Engineering and Technology, Vol. 4, No. 1, 2007, pp. 95-105 
 

ISSN 1823-1039 ©2007 FEIIC 
 

100

Where: 
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 (14) 
 

It can be written: 
 

   6
1

65
1

54
1

4 QLLQQLLQQLLQ *** −−− ===      (15) 

 
 
With substituting our new form of Te and Qi in high order stiffness formulation and expanding it we can write: 
 

        )QEQQEQQEQ(hK **
nat

T***
nat

T***
nat

T*
665544 ++=θ …                        (16) 

 
Hence the formulation of Kh with new notation is more efficient in view point of computational time and effort 
compare to that of Felippa [21].  Also same formulation adapted for calculation of stresses. 
 
 
FINITE ELEMENT PROGRAM 
 
The existing two dimensional finite element analysis program written by Noorzaei et al.[24] has been 
extensively modified in view of  inclusion of optimal ANDES element which is  based on new formulation 
present in this paper[25]. The program element library includes several conventional finite element such as 
beam, truss, Finite and Infinite 2-D Isoparametric element. This program is multi element, multi degrees of 
freedom and dynamically dimensioned features. The program is written in FORTRAN language and works 
under FORTRAN power station environment. 
   
TESTING AND VERIFICATION 
 
In order to validate the formulation, computational algorithm and implementation of new formulation of 
ANDES element, two benchmark examples available in the literature are presented. [19] Table 2 shows the 
notations used for previous results in literature. 
 

Table 2: Identifier of Triangle Element Instances   
 

Name  Description 
ALL-3I  Allman 88 element integrated by 3-point interior rule.  

ALL-3M  Allman 88 element integrated by 3-midpoint rule.  

ALL-LS  Allman 88 element, least-square strain fit.  

CST  Constant strain triangle CST-3/6C.  

LST-Ret  Retrofitted LST with αb = 4/3.  
OPT  Optimal ANDES Template.  

 
Example 1- Cantilever beam under End Moment 
The slender cantilever beam of Fig. 4 is subjected to an end moment M = 100. The exact tip deflection δtip = 
ML/( 2E I) is 100. The geometric data, material properties, boundary condition, loading and dimension of the 
beam are also presented in the figure. 
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Figure 4: Slender cantilever beam under end moment 

 
Figure 5: Tip deflection for cantilever beam (exact=100) 

 
The above example has been discretized regular meshes ranging from 2×2 to 32×2 , each rectangle mesh unit 
being composed of four half-thickness overlaid triangles. The element aspect ratios vary from 1:1 through 16:1.  
Fig. 5 shows computed tip deflections for several element types and five aspect ratios (1, 2, 4, 8, and 16) 
respectively.  It is clear from this plot that there is a good agreement between the results evaluated from the 
present study and that reported in the literature. Moreover the FF84 element maintains good but not perfect 
accuracy. The Allman 88 triangle performs well for unit aspect ratios but rapidly becomes over stiff for γ > 2. 

 
Example 2- The Shear-Loaded Short Cantilever 
The shear-loaded cantilever beam defined in Fig. 6 has been selected as a test problem for plane stress elements 
by many investigators since originally proposed in [20]. The geometrical data, material property, boundary 
condition and loading are exhibited in Fig. 6. 

 
Figure 6: Cantilever under end shear: E = 30000, ν = 1/4, h = 1 
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The comparison value is the tip deflection δc at the center of the end-loaded cross section. An approximate 
solution derived from 2-D elasticity, based on a polynomial Airy stress function, gives δc = 0.34133+0.01400 = 
0.35533, where the first term comes from the bending deflection, and the second from a y-quadratic shear field.  
Fig. 7 gives computed deflections for rectangular mesh units with aspect ratios of 1, 2 and 4 respectively. Mesh 
units consist of four half-thickness overlaid triangles. For reporting purposes the load was scaled so that the 
“theoretical solution” becomes 100.00. Of the four Allman triangle versions again ALL-3I outperformed the 
others. The results for FF84 and OPT triangles are very similar, without the latter displaying the clear 
advantages of Example 1. Prediction of result by present finite element program coincide with OPT element. 

 
               Beam mesh 8x2 in γ = 1                                                          Beam mesh 16x4 in γ = 1 

 
Figure 7: Tip deflection for short cantilever 

 
APPLICATION OF OPTIMAL ELEMENT IN SHEAR WALL STRUCTURE 
    
In order to show the efficiency, suitability, accuracy and superiority of the OPT element an attempt has been 
made to analyze the shear wall structure with opening employing the following commercial package namely 
SAP-2000, STAAD-PRO and Finite element program base on plane stress formulation. The structure was 
represented by two finite element models namely Model A (coarse mesh) and Model B (fine mesh) as depicted 
in Fig. 8. 
 
The lateral displacement of each model at story 2, 4, 6 and 8 for all the all finite element codes has been 
tabulated in table 3. It is clear from this table OPT element gave the most suitable result as compared with the 
other commercial packages. It can be said that the shear wall structure can be analyzed using OPT element even 
having coarse mesh. Fig. 8 shows geometry and material property of an eight story coupled shear wall.  

 
Figure 8: Geometry and material of coupled shear wall 
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Table 3:  Comparison of the Lateral deflection at different story level 
 

Lateral displacement at floor level Finite element 
Method Model 

Floor 2 Floor 4 Floor 6 Floor 8 
Model a 0.56 1.53 2.59 3.62 
Model b 0.68 1.82 3.02 4.16 Finite element 

Differentiate  % 21.4 18.9 16.6 14.9 
Model a 0.55 1.48 2.54 3.62 
Model b 0.77 2.06 3.40 4.66 SAP2000 

Differentiate  % 40.0 39.1 33.8 35.5 
Model a 0.68 1.68 2.78 3.86 
Model b 0.79 2.08 3.44 4.69 STAAD-PRO 

Differentiate  % 16.1 23.8 23.7 21.5 
Model a 0.71 1.91 3.19 4.43 
Model b 0.74 1.98 3.28 4.51 OPT element 

Differentiate  % 4.2 3.6 2.82 1.8 
 

Stress distribution 
Contour of normal stress distribution, σx   calculated by STAAD-PRO and SAP 2000 and present study are 
depicted in Figs. 9 and 10 respectively. It is seen from these plots that Finite element program using OPT 
element is capable to predict almost similar stress distribution in the shear wall as well as at the connecting 
beams. Moreover the stress distribution evaluated from the present study is from coarse finite element mesh 
in comparison with that of commercial packages with fine mesh. 
  

                        
  
     OPT element                                                                          STADD-PRO                                            SAP-2000 

Figure 9: Contour of normal stress for shear wall 
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             OPT element                                                   STADD-PRO                                             SAP-2000 

 
Figure 10: Contour of normal stress for connection beam 

 
 
CONCLUSION 
 
In this study an alternate formulation OPT elements, which reduce the computer programming and the 
computational cost, have been presented. The accuracy of finite element program has been established by 
analyzing some standard benchmarks example. The numerical study indicates that using OPT element for a 
wide range of aspect ratio, shows the performance of good accuracy in finite element idealization with coarse 
mesh for analysis of shear wall structure. 
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