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ABSTRACT 
 
Forward scattering radar (FSR) is a special mode of bistatic radar that can be used for target detection and 
classification. FSR offers a number of interesting features such as: relatively simple hardware; an enhanced 
target radar cross section (compared to traditional radar); a long coherent interval of the receiving signal; 
robustness to stealth technology and possible operation using non-cooperative transmitters. This paper 
discusses the FSR technology, the current and possible applications as well as the limitations of FSR. All claims 
in the paper are supported by the experimental result of the FSR feasibility study to the automatic ground target 
detection and classification. The paper introduces the radar system itself, this include the overall classification 
system and the extraction of features from the radar measurements.  
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INTRODUCTION 
 
In the Radar System, if the transmitter and receiver are collocated, this configuration is known as a monostatic 
radar system. In contrast, if the transmitter and receiver are separated by a distance comparable to that of the 
maximum range of the target, the system is known as a bistatic radar system. The monostatic and bistatic radar 
system configuration is illustrated in Figure 1(a) and (b) respectively.  
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Figure 1: (a) Monostatic radar (b) Bistatic radar and (c) Forward scattering radar 
 
Forward scattering radar (FSR) is a special type of bistatic radar, where the target is close to the transmitter-
receiver baseline as shown in Figure 1(c). FSR presents a conservative class of systems that have a number of 
fundamental limitations, including the absence of range resolution and operation within narrow angles. On the 
other hand, FSR offers a number of peculiarities that make it a viable interest. Its’ most attractive feature is the 
steep rise in the target radar cross section (RCS) compared to traditional monostatic radar [1–2], which improves 
the sensitivity of the radar system. The forward scattering RCS mainly depends on the target’s physical cross 
section and the wavelength, and is independent of the target’s surface shape as well as to any radar absorbing 
material (RAM) coating which reduces the target’s RCS in traditional radar [3]. This feature makes FSR robust 
to stealth technology. In addition, by using inverse synthetic aperture algorithms in FSR, with their high cross 
range resolution, FSR can be used for target classification [4]. FSR also requires relatively simple hardware and 
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has a long coherent interval of the received signal; this is the consequence of the loss in range resolution. 
Moreover, FSR receiver can utilise radiation from non-cooperative transmitter without revealing its location. In 
a hostile environment this is highly desirable as the receiver may be used covertly. 
 
History of FSR 
 
Before and during World War II, a so called ‘forward scatter fence’ was used for aircraft detection, and almost 
200 of these fences were deployed by France, Japan and The Soviet Union [5]. These were bistatic radars, but 
their geometry was similar to the forward scatter configuration, where targets fly near the transmitter-receiver 
baseline. These radars used continuous wave (CW) transmitters, so the receiver detected a beat frequency 
produced between the direct signal from the transmitter and the Doppler frequency shift scattered by the moving 
target. During that time, these forward scatter fences were found to be of very limited use for air defence. Since 
the coverage area is very narrow, only targets that penetrated a single given fence could be detected. If the target 
rapidly flew out of that fence it could not be located and tracked. Only when adjacent fences were deployed an 
approximate position and velocity could be estimated. This problem causes the complex nature of the system. 
Consequently, most of the early forward scatter fences were eventually replaced by monostatic radars which 
have better spatial coverage area and location accuracy. 
 
Currently, electronic fences or microwave fences are widely used in security applications to protect large 
territories. As far as we concern, only one set of research is currently under way for the FSR development for air 
defence systems that is in Russia [6 – 8].  
 
FSR Technology 
 
In bistatic radar, one of the factors affecting the electromagnetic (EM) field strength and pattern at the receiver 
is the angle that the target makes to the transmitter and receiver, this angle is called the bistatic angle, β. When 
the bistatic angle is equal or near 180° (β ≈ 180°), the radar system is referred to as FSR system as shown in 
Figure 1(c). At forward scattering, the presence of a target will partly block the signal wavefront from the 
transmitter. This blocking yields a hole in the wavefront, known as the target shadow. This shadow is actually 
an EM field being scattered by the target. This follows the EM field theory that is [9], when there is an 
absolutely black body that is placed in the path of wave propagation and the dimensions of this body are large 
compared with the wavelength, then a scattered field exists behind the body (a ‘shadow’ field)’. This field is a 
result of primary field disturbances. The scattered field could be represented as the shadow lobe, and this lobe 
pattern follows the antenna pattern of a uniformly illuminated flat antenna in the shape of the shadow with 
negative illumination (180°) relative to the primary field [10]. The shadow field polarisation is the same as that 
of the incident wave. Since the pattern of the shadow depends on the target’s silhouette, it does not depend on 
the target’s surface shape. This characteristic shows the independence of the forward scatter RCS to the RAM 
coating which reduces the scattered field generated by surface currents on the target, and hence the traditional 
monostatic RCS [9].   
 
Another important aspect of forward scattering is that, the target’s coherence time is rather high and specified by 
the stability of the transmitter at the baseline. This is a direct consequence of the range resolution losses. 
Complex targets in FSR have reflections similar to those from the point targets. On the other hand, because of 
the absence of range resolution, signals in FSR do not experience fluctuation due to the target’s natural 
swinging.  
 
The Current Status of FSR 
 
To the best of the author’s knowledge, this research is the only systematic study of this problem in the world. 
The study is to show the feasibility of FSR to ground target classification. Taking into account that the 
development of a full-scale electrodynamic model of complex 3-D targets at a heterogeneous background is not 
feasible, an experimental approach was taken. Being a feasibility study, this research is not targeting the 
comprehensive radar system analysis; but forms a foundation to develop a complete radar system in the future. 
We have developed an experimental 890MHz ground-based FSR for targets automatic classification using their 
Doppler signatures. The experiment was done on a public road transport. The sensor is placed about 1 metre 
above the ground with the transmitting and the receiving antennas facing each other on different sides of the 
road. The transmitted microwave field is diffracted by the moving vehicle as it passes the forward scattering 
region. This field contains Doppler frequency components due to the vehicle motion. The Doppler spectrum of 
the diffracted field is used to create the vehicle’s signature, which is the input to the classification algorithm. 
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The proposed system is low cost, simple, easy to install and uses only CW or narrowband signals at low 
frequency, making it robust to any weather conditions. In this section the FSR system is described, the 
methodology on getting the FSR system to be viable is discussed and all the relevant results are presented. 
 
FS Sensor 
 
Figure 2 illustrates the simple FSR radar block diagram and the system topology used for vehicle classification.  
It comprises two major parts: the hardware (the radar itself) and the software (classification algorithm). The 
transmitter is a continuous wave (CW) generator connected to low gain or omnidirectional antenna, while the 
receiver includes a non-linear component to select Doppler frequency, which after low-pass filtering, gaining 
and A/D conversion are ready for signal processing. The software includes the basic FFT, target speed 
estimation algorithm, feature extraction using the PCA method, and the classification algorithm. The waveform 
at the receiver input contains the signal with Doppler frequency diffracted from the moving vehicle as well as a 
direct signal from the transmitter.  When these signals pass through the non-linear device (diode), they introduce 
Doppler frequency components, which are then used in further signal processing. These signals are referred to 
as the ‘vehicle signature’. 
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Figure 2: FSR block diagram for vehicle classification 

 
 
Vehicle Data Collection 
 
An experiment to collect data using real vehicles was carried out on a public road using the setup shown in 
Figure 3.  During this experiment, signals from a random stream of vehicles as well as a number of test vehicles 
were collected and recorded. Figure 4 shows a sample of the captured waveform, both in time and frequency 
domains, when a vehicle passed between the transmitter and receiver. 
 
In addition to the recording vehicle signatures, the speed of each vehicle was recorded in this set of experiments 
using a video camera that captured the scene of the experiment as shown in the photo of Figure 3. As detailed in 
the following section, the knowledge of the vehicle’s speed is an important part of data processing in order that 
each vehicle plot could be scaled to a reference speed prior to classification. In order to estimate speed, two 
posts, separated by 16m, were placed within the scene of the experiment (the two white lines in the photo of 
Figure 3) to provide a reference distance. By playing back the recorded video, the speed of a particular vehicle 
can be evaluated by measuring the time taken for a vehicle to travel between the two posts. 
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Figure 3: Experimental setup block diagram and a typical video from the test day. 
 

Figure 4: Sample vehicle signature in both the time and frequency domains. 
 
 
THE CLASSIFICATION SYSTEM 
 
Feature Extraction Using the Principle Component Analysis 
 
Let us denote by o the spectral feature vector as obtained from the pre-processing block (see the block-diagram 
on Figure 2).  Such feature vector is of a high-dimension and the features are highly correlated. We employed 
the Principal Component Analysis (PCA) as a means of reducing the dimensionality of the spectral feature 
vector by exploiting the correlation between the features. The PCA technique has often been used in various 
data classification problems [11 – 12]. The PCA projects high-dimensional data onto a lower-dimensional space 
(called principal component space) by using the projection that best represents the data in a least-squares sense 
[13]. The principal components are arranged in such order that the amount of variance of the data explained by 
each principal component is non-increasing. Often only the first few principal components are necessary to 
represent the information contained within the data. 
The PCA technique performs a linear transformation of a given spectral feature vector o into the principal 
component space, resulting a new feature vector O, i.e. 
 

TmoWO )( −⋅=                      (1) 

where m is the mean vector of the training data and W is  the transformation matrix, both obtained from the 
training data. 
 
Obtaining PCA parameters from the training data 
 
Let us assume a training set of feature vectors }{ i

co , where i
co  is the ith feature vector of dimension N from the 

category c.  The PCA decomposes the covariance matrix S calculated from the entire feature set into 
 

     TULUS =                       (2) 

where L is a diagonal NxN matrix containing the eigenvalues sorted in a non-increasing order of magnitude and 
U is a NxN matrix containing the eigenvectors. 
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The transformation matrix W is formed by the eigenvectors corresponding to the first M highest eigenvalues, i.e. 
];;;[ 21 MuuuW Κ= . The value of M is usually low and can be decided empirically based on the amount of 

variance explained by the eigenvalues. 
 
Classification 
 
In the training phase, the PCA transforms each training feature vector i

co  into the space defined by M principal 

components.  Each transformed training feature vector i
cO  is associated with a label (vehicle category or model 

in our case).  These form the models of each class and are used during the classification of an unknown vehicle. 
In the classification phase, the system captures a signal corresponding to an unknown vehicle passing through 
the radar system.  This signal is passed to the pre-processing block and the spectral feature vector, denoted ou, is 
obtained.  The feature vector ou is then transformed into the PCA-space by using Equation (1), resulting a new 
feature vector Ou. 
 
The final step of the classification is to use a classification rule decide tothe class (e.g. vehicle-category) of the 
unknown vehicle based on the feature vector Ou.  Various classification rules can be used, for instance, one can 
(based on the training data) model the probability density function corresponding to each class and then apply a 
Bayesian decision rule, or use a neural-network classifier.  Due to the limited amount of training data, for this 
work we employed a simple classification rule; namely the k-nearest neighbour classifier. 
 
 
EXPERIMENTAL EVALUATION AND RESULTS 
 
Vehicle-Category Classification 
 
A test system for the experimentation has been developed to prove the concept.  During experimentation, 850 
car signatures were obtained from the free flow road and stored in the database.  The goal is to automatically 
classify these cars into one of three conditional vehicle-categories; namely, Small car, Medium car and Large 
car. Typical examples of models from each category were used as training data (reference signature) and 
presented in Table 1.  
 

Table 1: Vehicle-categories with the corresponding car-models used in the training phase of the classification system 
 

Vehicle-
category 

Example of car-
models in the 
training data 

 
NA 

Representative 
car model 

Small  
 

Honda Civic, 
Peugeot 206, Ford 

Ka, BMW Mini 

 
95 

 

Medium 
 

VW Golf, Peugeot 
406, Vauxhall 

Astra , Ford Focus, 
Mercedes E-class, 
VW Passat, BMW 

 
192 

 

Large 
 

Renault Traffic, 
Vauxhall Combo 

 
140 

 
NA = Number of vehicles for each category in the training data. 

 
Figure 5 shows a plot of all the training data in the principal component space (for clarity reasons we only show 
a 2D plot).  It can be seen that examples of each vehicle-category are located in different parts of the PCA-space 
with little overlap between the categories.  In this experiment, we used the first three principal components for 
the classification process, which described 91% of the variance of the training data. The k-nearest neighbour 
classifier with k=3 was used. 
 
In total, 427 signatures for the test data, consisting of different types of models, were taken from the main 
database. These types of models signatures are not included in the training set. The testing data can be visually 
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classified into the vehicle categories according to the image from the video camera.  This is then compared with 
the category label acquired from the automatic classification system. The category classification results are 
presented in Table 2. The results show that very good performance of the system can be obtained with a limited 
amount of data for both testing and training.  From the results we can see that classification was correct by 75% 
for Small car, 89% for Medium car and 71% for Large car.  It is difficult to obtain clear categorisation of 
vehicles and therefore the main errors occurred between neighbouring categories.  For example, 22% of Small 
car were classified as Medium car, and 25% of Large car were classified as a Medium car whereas there was 
only 2 – 4% error between Small and Large car. 

 
Figure 5: The location of training data of each vehicle-category in the PCA-space. 

Notation: Small (+), Medium (□), Large (●) 
 

Table 2: Vehicle-category classification results 
 

Automatically classified as [%] Category 
classified from 

video image 

 
NV Small Medium Large 

Small 234 75 22 3 
Medium 134 9 89 2 

Large 55 4 25 71 
NV = Number of vehicles for each category in the test data. 

 
Vehicle-Model Recognition 
 
This section presents the results obtained for recognising a specific model from a collection of vehicle-models. 
In the database, we have four vehicle models; namely, Honda Civic (70 examples), Vauxhall Astra (132 
examples), Vauxhall Combo (81 examples) and Renault Traffic (60 examples). Fifty data examples from each 
model were used for training and the rest were used for testing. The classification method and the number of 
principal components used are the same as in Section 4.4.1. Table 3 presents the experimental results.  A very 
good match can be seen; with 100% correctly recognised for Honda Civic, 97% for Vauxhall Astra, 91% for 
Vauxhall Combo and 80% for Renault Traffic. 
 

Table 3: Vehicle-model recognition results 
 

Automatically recognised as [%]  
Vehicle-
models Honda 

Civic 
Vauxhall 

Astra 
Vauxhall 
Combo 

Renault 
Traffic 

Honda 
Civic 100 - - - 

Vauxhall 
Astra 1 97 2 - 

Vauxhall 
Combo 3 6 91 - 

Renault 
Traffic - - 20 80 
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CONCLUSION AND FUTURE APPLICATION 
 
This study has confirmed the high sensitivity for target detection and classification in FSR. Based on the 
presented result, it is proved that FSR system has a huge potential to be used as an alternative system for ground 
target detection and classification. The benefit of using FSR for ground target classification is that it could be 
useful in many applications where currently microwave fences are used. 
 
In recent years there has been a marked increase in the use of micro-sensors (MS) technology. MS comprise of a 
variety of sensors connected in a network. An individual sensor is simple, miniature and low-cost. It can detect 
an intruder which crosses the receiver-transmitter line. Technically, the transmitter is a low battery powered CW 
generator whose signal is received by a receiver over the line of sight distance. When a landscape is 
sophisticated these sensors can form a linear net, where each transceiver is used as the communication net node. 
This MS net could have an arbitrary configuration, depending on applications, to prevent an intrusion in a 
particular area. The transceiver can be deployed to their position by ‘spreading’ from aircrafts (including 
unmanned), or purposely placed at a known position, etc. Having a GPS receiver on the MS transceiver board, 
the node position is known. The data received from this net carries a lots of useful information regarding 
protecting an area. Using the effect of Shadow Synthetic Aperture that exists in forward scattering (FS) radar, a 
Forward Scattering Micro Sensors (FS MS) could be developed. However, the current status of this system 
study is not enough for vulgar results extrapolation into ground applications. Potentially the proposed FS MS net 
can complement or replace optic systems, taking into account that: it operates at a low RF band which is 
absolutely robust to weather and other external conditions; transparent for foliage, grass and similar natural 
‘maskirovka’; for the target classifications narrowband data is used (signature vs image in optical systems), this 
is important if the signature needs to be transferred over a low data rate communication channels; transceivers 
are simple and do not require orientation when deployed; it can be developed and installed as a disposable stuff. 
Applications of these systems for a ground force operation are a fundamentally new and promising topic, which 
comprises both a new theoretical study and technical implementations. 
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