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ABSTRACT 
 

A mesh reduced method (finite strip method), for non-linear stress analysis based on the tangential stiffness 
matrix has been developed using the new concept of polynomial finite strip elements, with Mindlin plate-
bending theory for composite plates. A progressive damage methodology and algorithm for composite laminates 
was successfully developed for the new finite strip methods using stress-based failure criteria. A finite strip 
analysis programming package which is capable of performing non-linear progressive damage analysis for 
composite plates has also been developed with Mindlin plate bending element. Validation of the developed 
finite strip package has been successfully carried out by comparing the results with corresponding results 
obtained with the finite element analysis using ABAQUS and with some published experimental results. Good 
comparisons with the finite element results and experimental results were observed through various test cases, 
confirming the accuracy and reliability of the new derivations and the programming package. 
 
Keywords: finite strip methods, Mindlin’s plate bending theory, composite materials, progressive damage 
analysis. 
 
 
INTRODUCTION 

 
Thus far, many research on the progressive failure analysis of composite laminated plates and shells have been 
successfully carried out using the finite element method (FEM) in order to simulate failure modes in composite 
materials.. Although the finite element method is considered as a very powerful and versatile tool [1], it requires 
a sophisticated mesh generation for the analysis. The finite strip method (FSM) [2], which is a specialization of 
the FEM with a reduced dimensionality, can be used as an alternative to the FEM for the progressive damage 
analysis of composite laminates. 
 
The failure analysis of composites which was performed by Lee [3] can be regarded as one of the first finite 
element based failure analysis. He performed a three-dimensional finite element analysis and employed his own 
direct-mode determining failure criterion to predict the failures in composite laminated plates subjected to 
uniaxial and biaxial loadings. Since then, there have been numerous literatures regarding the progressive failure 
analysis of composite laminated plates and shells [4 - 13], and stiffened panels using FEM, [14, 15]. 
 
The progressive damage analysis using finite strip methods (FSM) did not receive much attention so far. Cheung 
and Akhras [16] devised a finite strip method for the progressive failure analysis of composite laminates based 
on higher order shear deformation theory and Lee’s failure criterion. The results of the finite strip method were 
in good agreement with existing analytical and numerical solutions. They also investigated the effects of fibre 
orientation and the number of plies on the load carrying capacity of composite laminates. However, only 
infinitesimal strain was considered in the formulation of the finite strip equations.  Zhang et al. [17] developed a 
B-spline finite strip method to simulate large deflection and delamination behaviour of laminated composite 
plates subjected to transverse loading. In order to model progressive failure phenomena of composite laminates, 
both stress-based criteria and fracture mechanics-based criteria were employed, and the former for delamination 
whilst the later for delamination propagation. Good agreement between the finite strip method and the available 
experimental and analytical results has been achieved. 
 
This paper presents the development of a progressive damage analysis methodology for stress analysis of 
composite layered plate using new derivations of finite strip methods. Non-linear equations will be derived 
using the tangential stiffness matrix approach, which is an improvement to the work of Razzaq [18, 19] with all 
integrations over the plate thickness carried out analytically. To the authors’ conclusion, in the literature 
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concerning the damage assessments of composites, very little work was reported which studied the non-linear 
damage progression in composite laminates using finite strip methods. Thus, it is one of the objectives of the 
author to develop the progressive damage analysis of composite laminates using finite strips equations. 
 
 
DERIVATIONS OF FINITE STRIP EQUATIONS 
 
In this work, the finite strip analysis of composite plates and shells, which is based on a new derivation of the 
first order shear element (Mindlin type element [20]) is presented taking into account the geometric non-
linearity. This derivation follows concepts similar to those employed in the finite element analysis using the 
tangential stiffness matrix approach. The derivations are based on a new Mindlin-type finite strip element [18] 
and [19] in which one-dimensional Lagrangian interpolation will be employed along both the x and y directions   
together with appropriate reduced integration schemes. 
 
 
Displacement and strain components 
 
Consider a composite laminated plate which is parallel to the x-y plane. The upper and lower surfaces of the 
plate are defined by z = h/2 and z = - h/2 respectively, where h is the thickness of the plate Based on Reissner’s 
theory [21], the transverse shear strains at any point (x, y ,z) inside a plate can be represented by parabolic 
distributions across the thickness of the plate as follows: 
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where   and γγ yzxz

are the average values of the transverse shear strains over plate thickness. The average 

values of the transverse shear can be used to define the displacement components, which leads to: 
  

 ),(),(),,( yxzyxzyxu yu θ+= ο   (2) 

 ),(),(),,( yxzyxzyxv xv θ−= ο   (3) 

 ),(),,( yxwzyxw ο≅  (4) 
 
Equations (2), (3), and (4) represent the displacement components at any point (x, y, z) inside the plate, ( )  o are 
the values of u, v and w at the mid-plane of the plate ( z = 0 ), and  θθ yx ,  represent average slope angles defined 

as follows: 
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In this work the transverse shear strains are always assumed infinitesimal while for non-linear static analysis, the 
x-y strain components are assumed finite. Using Green’s strain displacement equations [22], the strain tensor at 
any point inside the plate can be obtained using appropriate engineering notations. 
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Interpolated Displacement Equations 
 
Mindlin-type finite strip elements are based on employing piecewise one-dimensional Lagrangian interpolation 
along the x-direction in terms of n-node elements. On the other hand, a smooth polynomial of degree m-1 is 
employed along the width (y-direction) also using the Lagrangian interpolation. The full x-y interpolated 
displacement equations can be expressed for an n-node finite strip, with m y-terms ( harmonics) as follows[18]: 
 

 r
i

n

i

m

r
i uNyxu ∑∑

= =

=
1 1

r )(µ)(),( ηξo     (7) 

   r
i

n

i

m

r
i vNyxv ∑∑

= =

=
1 1

r )(µ)(),( ηξo  (8) 

 r
i

n

i

m

r
i wNyxw ∑∑

= =

=
1 1

r )(µ)(),( ηξ  (9) 

 i
r
x

n

i

m

r
ix Nyx )()(),(

1 1
r )(µ θξθ η∑∑

= =

=  (10) 

 i
r
y

n

i

m

r
iy Nyx )()(),(

1 1
r )(µ θξθ η∑∑

= =

=  (11) 

where the shape functions )(  and )( µ ηζ rrN  are  
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which represent one dimensional  Lagrangian shape functions. 
 
 
Interpolation of Strain Components 
 
Transverse Shear Strains 
 
From equations (9)-(11) it can be proved that: 
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Notice that: 
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Defining 
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then equation (14) can be rewritten in the following matrix form: 
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Notice also from equation (19) it can be deduced that: 
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The  x-y Strain Components 

 
The infinitesimal (small) strain components can be expressed by the following equation: 
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Similarly it can be deduced that: 
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It can be proved that the rotation vectors [22]: 
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which can be rewritten as follows: 
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Similarly, it can be proved by using the same technique that: 
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Hence, it can also be proved that the total   x-y strain (infinitesimal and large): 
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Stress Components 
 
The stress components at a point in the thl   layer, can also be partitioned and represented by the following 
vectors [22]: 
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Using stress-strain relations for the thl  layer, then: 
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Derivation of element stiffness matrices 
 
Using the principle of virtual work, the work done by actual loads is equal to the work done by equivalent nodal 
loading [22], i.e.: 
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represents the integrated material stiffness matrix integrated across the thickness of plate [22]. 
 
The following non-linear stiffness matrix terms can be defined for a strip: 

( ) dydxGSGK r
m

strip

ts
m

sr
mm )0(∫∫=     (54) 

( ) dydxGSGK r

strip

ts
m

sr
m θθ )1(∫∫=      (55) 

( ) dydxGSGK r
m

strip

tssr
m )1(∫∫= θθ

     (56) 

( ) dydxGSGK r
ww

strip

ts
w

sr
ww ∫∫=     (57) 

( ) dydxGSGK r

strip

tssr
θθθθ )2(∫∫=      (58) 

 
Where S represents the stress matrices integrated over the thickness [22] 
 
 
Matrix Form of Linearized Equations 
 
The non-linear static analysis can be linearized and be written in the following matrix form: 
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where  σKK and are the tangential and non-linear stiffness matrices respectively. The residual force and nodal 
displacement vectors δ andR respectively are defined as follows 
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If sr Rd ,δ  are defined such that: 
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for s = 1, 2,3, ….. , m. 
 
Therefore, the partitioned element matrices can be defined as follows: 
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PROGRESSIVE DAMAGE METHODOLOGY 
 
A progressive failure methodology is developed for predicting the failure of laminate composite plates and 
shells under geometrically non-linear deformations. Using Mindlin-type, element. The failure criteria included 
in the present failure assessment are the stress-based failure criteria proposed by Tsai-Hill [23], Hoffman [24] 
and Tsai-Wu [25]. An algorithm for a progressive failure analysis has been developed and is illustrated in 
Figure 1. The analysis begins with the description of the finite strip model such as the boundary and loading 
conditions, and material properties. The second step is to compute the stiffness matrices for each strip and to 
assemble them to form global stiffness matrix. Next, nodal stresses at each ply, each node, each y value and 
each z-point are calculated and transformed into the material axes. The values of the transformed nodal stresses 
at the middle layer of each ply at each y value are used with one of the failure criteria to determine whether any 
failures have occurred at each load increment. If failures are detected, i.e. if the transformed stresses exceeded 
the respective failure criteria, a reduction in the value of the material properties will take place using a material 
degradation model which will be discussed in the next section. Equilibrium will then be re-established by 
evaluating the residual vector by using equation (63). If convergence is achieved after establishing equilibrium, 
then the applied load or displacement is increased. On the other hand, if a converged solution is not attained, the 
non-linear analysis at the same load increment will be repeated until a converged solution is found. The process 
is repeated until the catastrophic failure of the structure is reached. 
 
 
Damage Modelling 
 
In this research, a material degradation model based upon a total element or strip reduction method is 
implemented [26]. For each node at any y value of each ply (middle surface) that fails, the particular strip is 
reduced using a stiffness reduction factor given by the following equation: 
 

( )termsofNo.NodesofNo.
FailureofOccurrenceofNo.0.1)(FactorReductionStiffness
y

SRF
×

−=    (68) 
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For a two-noded strip which consists of two y terms, the overall stiffness of that particular strip is reduced by 
25% if one of the nodes at one of the y terms has failed. Likewise, the stiffness reduction continues to occur as 
more points in a particular strip fail. If all the points in a particular strip satisfy the respective failure criterion, 
then the strip is assumed to have failed completely and the value of the stiffness reduction factor (SRF) equals 
zero. This adjustment accounts for the material non-linearity associated with a progressive failure analysis 
included within a non-linear finite strip analysis. 

 

 
Figure 1: Progressive failure analysis algorithm 

 
 

NUMERICAL EXAMPLES 
 
A finite strip programming package has been developed based on the new derivations of finite strip methods. In 
order to validate the new finite strip methods and to test the capability of the newly developed package, a 
number of validation procedures using different case studies will be presented. The validation has been 
performed by comparing the results of the progressive damage analysis with corresponding results from a 
commercial finite element solver package.  
 
In the validation procedure, the commercial package PATRAN has been used as a pre- and post-processor for 
generating finite element models and for displaying contour plots. The commercial package ABAQUS [27] has 
been used as the solver in the finite element analysis. All the progressive damage analyses using ABAQUS have 
been achieved by linking the non-linear analysis with a user-written subroutine (USLFLD) [27]. The user 
subroutine is written in FORTRAN language where it is saved as an independent file which contains the 
equation of one of the stress based failure theories.  On the other hand, the finite strip meshes have been 
generated by a built-in one-dimensional mesh generator, which are much simpler to create than the commercial 
package finite element meshes.    
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Progressive Damage Analysis of Cantilever Plate 
 
The analysis of cantilever plate with different types of loading has been carried out in order to assess the 
accuracy of the progressive damage methodology. Three types of load cases were considered namely: 
 
1) Tensile load in terms of a uniform line tensile force. 

2) In-plane bending, induced by a uniform in-plane shear force. 

3) Out-of-plane bending, induced by a uniform out-of-plane line shear force. 

Each type of load case including the geometry and boundary conditions is shown schematically in Figure 2. 
 

                                             
                  (a) Tension                                  (b) In-plane-bending                               (c) Out-of-plane-bending 
 

Figure 2: Schematic drawing showing the finite strip mesh of cantilever plate under various loading conditions. 
  
The results of each case study were validated against ABAQUS. Tsai-Wu criterion was used for the failure 
criteria in this validation. A 12-ply cantilever plate made of Carbon/Epoxy with stacking sequence of [-45/0/45]2s 
has been considered in this case. The thickness of each ply, the stacking sequence and the lamina material 
properties for the laminate are given as 

 
E11 = 134.75 GPa  E22  =8.24 GPa, G12= G23 =G31 = 7.0 GPa ,v12 = 0.325,  
 
Thickness of each layer = 0.0025 m 

 
Xt =1500.0 MPa, Xc = 1200.0 MPa, Yt = 50.0 MPa, Yc= 250.0 MPa, S = 70.0MPa 

 
The type of element used for ABAQUS is the 4-noded quadrilateral with full in-plane integration points called, 
S4. For the purpose of validation, it is sufficient to use six 3-noded finite strip elements in the finite strip meshes 
after performing a mesh convergence study.   
 
Cantilever Plate under Tension 
 
A non-linear static analysis has been carried out for the cantilever plate under tension, A line force of intensity 
2.0×106 N/m was applied axially (x-direction). The analysis was carried out for Mindlin-type element and its 
structural response before and after failure assessments were compared with ABAQUS using the S4 element.  
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Figure 3: Cantilever plate under tension 
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Load-deflection curves were obtained which compare the finite strip results using Mindlin-type element with 
ABAQUS finite element results. The displacements were measured at the free end of the plate. By referring to 
figure 3, all the non-linear static analysis (without damage assessment) results agree very well with ABAQUS 
finite element results. From the figure, it can be seen that all the progressive failure results agree reasonably well 
with the results from ABAQUS although there is slight difference between them in the upper region of the 
curves. This may be due to the use of slightly different implementations of damage modeling between the finite 
strip and finite element.  
 
Cantilever Plate under In-plane-Bending 

 
A non-linear static analysis has been carried out for the cantilever plate under in-plane-bending. A line shear 
force of intensity 1.3×105 N/m was applied in y-direction. The analysis was carried out for Mindlin-type element 
and their structural response with damage assessments were compared with that from ABAQUS. Load-
deflection curves were obtained which compares the finite strip results using Mindlin-type element with 
ABAQUS finite element results. The displacements were measured at the free end of the plate. By referring to 
figure 4, it can be noticed that all the progressive failure results from finite strip agree reasonably well with the 
results from ABAQUS.  
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Figure 4: Cantilever plate under in-plane bending 

 
Cantilever Plate under Out-of-Plane-Bending 

 
A non-linear static analysis has been carried out for the cantilever plate under out-of-plane-bending. A line out-
of-plane force of intensity 8.0 × 103 N/m was applied in z-direction. Progressive damage analysis was carried 
out for Mindlin-type, and its structural response was compared with that from ABAQUS. Load-deflection 
curves were obtained which compares the finite strip using Mindlin-type element with ABAQUS finite element 
results for both with and without damage assessments. By referring to figure 5 it can be noticed that all the 
progressive failure results from finite strip agree reasonably well with the results from ABAQUS. On the other 
hand, the non-linear static analysis results without damage consideration were also very good. Again, from the 
figure it can be seen that there is a slight discrepancies in the non-linear region of the curves which may due to 
the use of a slightly different implementations of damage modeling between the finite strip and the finite 
element. 
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Figure 5: Cantilever plate under out-of-plane bending 

 
Progressive damage analysis of Rectangular plate 
 
A two-layer Carbon-Epoxy rectangular plate, with antisymmetric cross ply [0/90], simply supported at two sides 
only under uniformly distributed transverse load has been analyzed in this case (see figure 6). The load and 
boundary conditions of the rectangular plate including its dimensions and material properties are similar to those 
used by Reddy [28] as follows: 
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Figure 6: Schematic drawing of the rectangular plate subjected to uniform pressure,q. 

 

A=1.5 in, B = 9.0in, Thickness of plate, h =0.04 in 

E11=20 msi, E22 = 1.4 msi, G12 = G13 = G23 = 0.7 msi, 

Xt = 309.0 ksi,  Xc =159.0 ksi, Yt =11.6 ksi, Yc = 29.0 ksi, S = 23.2 ksi 

 
For this test case 12 finite strip elements (Mindlin-type) were used to model the rectangular plate. The results of 
the maximum non-dimensional central deflection under uniformly distributed transverse loads are given in 
Table 1, and the results obtained using finite elements [28] and finite strips [17] are also recorded in the same 
table as comparison. It is interesting to see that the results of the present finite strip analysis are in excellent 
agreement with the results obtained by both researchers mentioned above. 
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Table 1: Non-dimensional out-of-plane central deflections of rectangular plate under uniformly distributed loads. 
 

              Non-dimensional out-of-plane deflections, w/h
Load q (psi) Present FS method Zhang et al [17] Reddy,[28]

(Mindlin)
0.04 -1.037 -1.035 -1.034

0.05 -1.100 -1.100 -1.100

0.10 -1.330 -1.328 -1.327

0.25 -1.710 -1.705 -1.705

0.50 -2.077 -2.073 -2.075

0.75 -2.330 -2.330 -2.332

1.00 -2.540 -2.535 -2.532

 
 

Progressive Damage Analysis of Square Plate 
 
The accuracy of the present finite strip methods is further demonstrated considering a square plate under a 
uniform distributed load. In this case, a four-layer [0/90/90/0] square cross-ply laminated plate subjected to a 
uniform distributed transverse loading has been considered. The plate is assumed to be clamped along all four 
edges and is subjected to a uniform load intensity of 13.8 kPa. The laminate material properties and dimensions 
are as follows 
 
E11= E22 = 12.61 GPa, G12 = G23 = G31 = 2.15 GPa, v12 = 0.24, 
 
length and width of plate = 304.8 mm, thickness of each layer = 0.6 mm, 
 
Xt = 1316.94 MPa, Xc = 1220.0 MPa, Yt = 42.75 MPa, Yc = 168.20, S = 48.30 MPa 
 
Non-linear progressive damage analysis has been performed using the present finite strip analysis (Mindlin 
element) and the results were compared with the results from ABAQUS and existing experimental results [29]. 
In figure 7, the centre deflection of the square plate under uniform distributed load was presented. From the 
figure, the finite strip results obtained using Mindlin element are in better agreement with the experimental 
results than those obtained using the ABAQUS finite element analysis. The maximum difference in the results 
between the finite strip analyses and the experimental is only about 10 percent. In contrast, 17 percent difference 
in the results has been observed between ABAQUS and the experimental results. The difference may be 
attributed to the inaccurate modelling of the clamped experimental boundary conditions, which may result in a 
small deviation on the deflections of the laminate. 
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Figure 7: Square plate under uniform pressure 



International Journal of Engineering and Technology, Vol. 3, No.1, 2006, pp. 21-36 

 

ISSN 1823-1039 ©2006 FEIIC 

35

CONCLUSIONS 
 
The work presented in this research contributes to the development of finite strip methods capable of simulating 
the damage or failure of composite laminates via a non-linear progressive damage analysis. Validation of the 
developed finite strip package has been successfully carried out by comparing the results with the finite element 
analysis using ABAQUS and with some published experimental results. A significant reduction in the modelling 
and effort as a result of only one-dimensional mesh required to model plates by using the package built-in mesh 
generator. Good comparison with the finite element results (ABAQUS) and experimental results were observed 
from previous test cases, confirming the accuracy and reliability of the new derivations, damage algorithm and 
the programming package. 
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